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EXTENSION OF A COMPOSITE PLANE WITH A THIN ELASTIC INCLUSION 
EMERGING ORTHOGONALLY ON A STRAIGHT MATERIAL INTERFACIAL LINE* 

A.A. EVTUSHBNKO and yu.1. SOROKATYI 

A problem of plane elasticity theory concerning the extension of a 

composite plane with a thin finite elastic inclusion emerging orthogonally 

on a straight material interfacial line is solved. The results of a 

numerical solution of the singular integral equation of this problem are 

represented for the stress intensity factors and the shear stresses on 

the axial line of the inclusion. Solutions of the corresponding problems 

for cracks /l-4/ and an absolutely stiff inclusion follow as special 

cases from the results obtained. Earlier /SJ/,the singularity of the 

stress field near the vertex of a slightly pliable inclusion emerging on 

the free boundary of a homogeneous isotropic half-plane was investigated. 

The problem of the elastic equilibrium of a piecewise-homogeneous plane consisting of 

two bonded half-planes wlthln one of which a thin elastic inclusion of finite length 

b-a and thickness 2h was located, was solved in /8/. 

2a, = 
The composite body is subjected to 

homogeneous tensile force fields at infinity co, (J, and u2, where 

k,‘o, = k,za, - (k,2 -kk,‘) (J,,, k,’ = (1 + x,)l(8p,), k,’ == (3 - x,)/(8p,) (i) 

where x, = 3 - 4v, for plane strain x, = (3 - v,)/(l + vj) f or the generalized plane state of 

stress and I%vl(i=1,2) are the shear modulus and Poisson's ratio of the half-plane 

materials. By using a Mellin transformation, expressions are obtained for the stresses and 

the derivatives of the displacements on an axis that agrees with the middle line of the 

inclusion on the segment a<r(b C/8/, formula (10):. Passing to the limit a->(J,8.=:m 

in these relationships (F'iq.lj, we find 

Tleo (r, n) = Tm” (rr n) + a,+, (r) + a,,t, (r) + h, (r) 
u,r’ (r, n) = l&O’ 

O<r<b 
(r. 4 + aal4 W + a& (r) + b (r), 

(2) 

Here 

611 
n 

Clln - x 7 clln - - allbI,“, a,h” cIln = - , 
XI 

bwn 
c**n --_ 1 (n = 0, 1,2) 

b,,” = b,,” = 1, + 3 (2 + x1) I,, b,,’ = -2 (7 + x1) Z,, 
b,,O = 1, + 31 b,,’ = bsI’ = -121, 

b,,O = 1, -i- ((I*- x:) I,, b,? = 4 (5 - x,) I,, b,f = 81, 

(i. f = 1, 2) 

1, LY mx, - x, 
2(m+xp) ’ 4 = *y m-l!5 

PI 

x, - 1 
a,, = a,, = - , 2Pl XI 

z(xl+l) %=xl+. a2l=- zp1(x1+1) 

fj (4 (i = 1, 2) are jumps in the stress and displacement simulating the presenceoftheinclusion 

%t( (r, n) = ---'/Jr (r). ulr' (r. n) = -l/j, (r), 0 < r < b (3) 

-QK? and UWO are the stress and displacement due to a given external load when there is 
no inclusion; the prime denotes the derivatives of the appropriate quantities with respect 
to the variable I. 
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Fig.1 

two equalities in (41, we obtain 
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The interaction conditions for a thin elastic 
inclusion with a matrix, written taking account of the 
symmetry of the problem under consideration relative to 
the plane O<r<oo, 6 =n, have the form /g-11/ 

ulr' (r, n) = k$Tya (r, n) - klow (r, n) (4) 

h%,~ (r, n) = koOzlee (r, n) - klozlr4 (r, n)i 

he (r, n) = po-1w3 (r, n), 0 < r < b 

s,P(r,R)=51,(0,n)-k-1S~~e(r,,n)dr,; kz=-?$?-, 
fl 

(POT vo are the shear modulus and Poisson's ratio of 
the material of the inclusion). 

Eliminating the mean tensile stress rira (r, n) in 
the transverse section of the inclusion from the first 

UP’ (r, n) -I- koo WY ule O-, n) = --k,we (r, 4, 0 < r < b 
k, = (kts - kom)/k; 

(5) 

Subsitution of the expressions (2) into condition (5) taking the third of relations (4) 
into account results in the singular integral equation (SIE) 

The desired function fa (4 satisfies the additional condition /8, lO/ 

iMro)bo=d (7) 

A = lute (0, s) - Ef;e (b, m)l*h-' * tie0 (0, m) - slee (6, n) 

(the expression for A is written on the basis of the definition of the jumps (3)). 
We represent the deformation ema (0,s) in the form 

slee (0, x) = ko" (IJ~ + M) - kl" (00 -I- L) (8) 

where the constants M and L should assume continuity of the change in the solution of the 
problem when going from the inclusion material over to the host material. The values 

M = AJA, L = A$A 
A zzz i3$3~ - 6;:6: 

A1 ~2 (kooklo - k,‘kJ’) u. + (@% - kobS::) a, + k,*6%,, 

A, zcz (i@Sz + 6::@:) u, -+- (kol@ - 2kooklL) q + koa$:oa 

tP ti=kpi&kpn; p=O,l; 1,n=0,1,2 

satisfy this requirement. 

(9) 

It can be seen by direct substitution thatwhenthere isnoincluston (PO = !4* v. = vl), the 
presence of a crack (p. = 0, v. = 0) or an absolutely stiff inclusion 
values %ee(O,n) agree with the solutions of the appropriate problems. 

(~h,=~;n~;;~; 0.5) the 
Blee (b, n) 

is obtained from (81 and (9) by replacing all subscripts 2 by 1. 
In the case of an absolutely stiff inclusion (p. = m, v. = 0.5) f%(r) = 0 follows from the 

integral Eq.f6), and we obtain the equation 
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for determining the abrupt change in the tangential stress. 

When p0 = 0, v0 7 0 we obtain f,(r) = 0 from (6) and an equation describing the elastic 
equilibrium of two half-planes of different kinds with a mathematical slit going from one of 

its vertices to the straight line of the bond /4/ 

By means of the change of variables 2r= b(.z+l) and 2r, == b(t + 1) and taking account 
of the relationship 

1 

[T(t)dt=~[sign(r-t)q(t)dt+-&Iq(t)dt, - i<z<i 
-1 --I --L 

the integral Eq.(6) and condition (7) are written in the form 

Here 

? .I 

-T 
dl -t &’ 5 sign (z - t) q2 (I) dt + 

-I -1 

T j k (5, t) (p2 (1) dt = 0 (5) 
1 

--I 

‘pl (2) = PO% (h -1 < t < 1 

s rpt (t) dt --- A’ 
-1 

k (a t) z 2, d,, (1 I. x)” ‘” (’ +--“+ ‘)-I , 
n=;O 

(10) 

d, = /Lok,d,,” + k,d,,” + pod,,” -i- d,” 

dilo =: b,,O, d,,’ -z - bill, d$ = ‘lrbr,’ (n--O, i, 2; i, j= 1,2) 

0 (s) = F (2rlb - 1) - &‘A, cpf (z) = 1, (2rlb - 1) (j = 1, 2), 

A’ = 2Alb, h,’ = b&/4 

The solution of the SIE under the condition (7) is sought in the form 

'PI (f) = (I - 1)= (i + t)" g, (t), --i <a, B < 0, --1 < f. < 1 

(I = 192) 

(1.3 

(& (t) is a bounded measurable function). Using the asymptotic values of the Cauchy integrals 

/12/ 

J--E dt = - g1 (- 1) 2= ctg nf3 (z + i)R + (13) 

g, (1) 2fl ctg CfJ (1 - 2)” + 00, (2) 
1 

I 
y cpf(l)(Z$ 1)“d”(~;*~+2)-’ 

s 
dt = 

--L 

- g, (- i) & B (B - 1). . . (B - n + 1) (2 + iI6 + 

lim (i + 2)+[0(z).00~ (z), (2 + i)“UP(Z)I=O 
X-4 

lim (i - 2)” [UJ (z), ool (t), (z + 1)” W(z)1 =0 
x-1 

,,,here Q~, (=) E ~~~~([-_1,1]; RI), Y,., (k = 0, 1; i = I, 2)is the Hijlder index, we obtain from the 

SIE (10) 
ctg alcf = 0, a = --'I, 

(14) 
XI ~0s J$ + do + d,B + 48 (B - 1) = 0 

An investigation of the second equation in (14) showed that it contains one real root 
&in the interval (-1,O) for arbitrary values of m = p,/p, and 8 = pdp,. Values for 
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-pa. iv are presented in the table for Vg = v1 = vI = 0.3. 

1 
1oJ 289 255 871 917 0.98 498 497 
101 294 260 851 929 0.i 

% % 
377 

23.1 81 278 142 855 0.045 826 858 367 z 
10 305 709 786 10-z 915 933 360 292 
1.02 497 501 502 10-s 973 963 358 289 
1,O 506 506 500 500 

Taking (12) into account the SIE (10) under the conditions (11) is solved numerically 
by applying the analogue of the Gauss-Jacobi quadrature fromula /4/ for the Cauchy integrals. 
we consequently arrive at a system of linear algebraic equations 

Here 

‘7 

1 

x c al 
N j=l 

c4(4)lW~ fi-z 1 I( + h,‘n sign (+ - tj) -I- k (34, tj)] = 6, (irk) 

2 Wjb’,(~,)=A’, k=l,Z ,._., h’--l 
j=l 

w4 

pfp’ (.) axe Jacobi polynomials, and r (-1 is the gamma function. The stress intensity 
factors atthe inclusion endfaces are determined in the form 

k (0) = lim 2%-&,~ (r, 0), k (b) = 1:: [2 (r - &)I”* ww (r, a) (If% r-0 

where the stresses ~r,ee (r,7L) are given by the relationships (2) while "r,eg(r,O) on the basis 
of /0/ are the following: 

qio = ‘Iam I(2 + x1) 1, - 341, qI’ = m (4 - 44 

4P0 = Pa (34 - u Pn’ = 2&* (4 - 4) 
E, = (i + mx,)-1, 2, = (m + x*)-l 

Using the asymptotic relationships (13), we obtain from (17) 

7188 (rr 0) l,>o = - k*f~ (4 ho + ih*f* 09 It<0 -I- 0 (+I, h > 0. 

*.__ (3+2131~~-(2+~+28)~ 
pl -m fsinnt] 

k*__Ps (3+2~)~4-(~~2~)~ 
sins@ 

From (2) we obtain at the endface r = b 

%I trt n) I*>b= %h (r) Ir<b -k a&(r) Ir<b i- 0 [(r - b)% h > 0’ (19) 

Substituting (18) and (19) into (16) yields 

k (0) = ~a-6 il*z% f-4) + ptt*g, (--ill (zq) 

k (6) = ai,"@*+ fa,,g, (1) + a,&:(Ql 

The dependence of the stress intensity factors k (O)/(U~~-@) (the dashed curve) and k W 
(u&/r) (the solid curve) (f- 1,2), calculated by means of (20), on the relative stiffness of 



the inclusion P is shown in Fig.2. The subscript 1 and curves 1 correspond to the CdSfC?S 

m = 23.08 (aluminium epoxy), )=2 and curves 2 to m = 0.045 (epoxy-aluminium) . The external 
tensile load (taking (1) into account) was given as 

o. = k,Vk,l = 0.428, CT, = 1.0, ol= 19.0 (aluminium-epoxy) 
o. = k,*/kol = 0.428, os = 1.0, Q, = 18.3 (epoxy-aluminium) 
X,==3-4 Y,' Yg = Yr = Y, = 0.3, h/b = 0,i 

I 

(21) 

Fig.2 Fig.3 
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The values of Sj(zbi) (1=i,2) are determined from the data of the solution of the system 
of algebraic Eqs.(l5) g,(I)) (t= i,2) using the interpolation formula /13/ 

p+6+1 

Pk-2k+a+~+l 
r(k+a+l)r(k+B+l) 

klP(k+e+B+l) 

It is necessary to take N= 25 to achieve a 1% relative accuracy of the calculation 
(determined by comparing the next approximations with the preceding ones). A change in the 
shear stresses r,,, (r.n)laj (i = i, 2) at the point r=O.l b of the axial line of the inclusion is 
shown in Fig.3 as a function of e The tensile stresses were also given in the form (21). 

The authors are grateful to D.V. Grilitskii under whose supervision the research was 
performed. 
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A VARIATIONAL METHOD OF 
FOR A BODY 

SOLVING AN ELASTIC-PLASTIC PROBLEM 
WITH A CIRCULAR HOLE* 

V.I. KERCHMAN and F.M. EELIKHMAN 

An approach based on the theory of variational inequalitiesandageneral- 
ized plastic analogy for the solution of the elastic-plastic problem (EPP) 
concerning the state of stress of a body weakened by a circular hole 
without the assumption regarding total enclosure of the hole by a plastic 
zone is proposed. The Haar-Karman hypothesis or an equivalent assertion 
is not used here. Generalizations are given to the case of a plastic 
inhomogeneous body and for the utilization of an exponential flow 
condition. Examples are considered and a simple method is proposed for 
estimating the plastic zone dimensions. 

It was assumed in the well-known solution given by Galin /l/ of the 
EPP on the biaxial tension of a plane with a circular hole and its 
generalizations /2-5/ that the plastic domain completely encloses the 
hole. The majority of existing solutions have been obtained for the 
stress concentration around a hole in an infinite domain. 

Let us consider the problem of the plane strain of a body Q with smooth outer contour 
L and a circular hole C of radius a (Fig.1). Near the outer boundary the medium under the 
loads acting on the body is in an elastic state. We shall also assume that if the plastic 
zone does not enclose the hole, then all its connected subdomains lie within appropriate 
characteristic triangles such that, as in the case of total enclosure, the stresses in the 
plastically homogeneous zone Dp are described by the relationships (tensile conditions) 

urrp = 2r, In (r/s)), UP& = 2T, [1 fin (r/a)], $0 = 0 (1) 

where r,6 are polar coordinates connected to the centre of the hole and T, is theplasticity 
limit. 

It is convenient to formulate a statically determinable EPP 
in the terminology of the Airy stress function /l-3/: it is 
required to find the function u(z,@ which satisfies the bi- 
harmonic equation in the elastic zone D” 

A'u = 0 (2) 
and the condition 

1 (%- $)" +4(+$)1<4r,* (3) 

I 
and satisfies the following equation in the plastic zone Dp: 

Fig.1 

The conditions 

uL=f(4* 
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